

The Nuclear Spectroscopic Telescope Array

Fiona Harrison Caltech

INTEGRAL, Swift BAT

Coded aperture mask Detector plane Shadow pattern

NuSTAR

Satellite (instrument)	Sensitivity
INTEGRAL (ISGRI)	~0.5 mCrab (20-100 keV) with >Ms exposures
Swift (BAT)	~0.8 mCrab (15-150 keV) with >Ms exposures
NuSTAR	~0.8 μCrab (10-40 keV) in 1 Ms

NuSTAR two-telescope total collecting area

Sensitivity comparison

Launch June 13 2012 Reagan Test Site, Kwajalein Atoll

Orbit

NuSTAR orbit

ASIA EUROPE AMERICA Aliantic Ocean AFRICA Indian Ocean AUSTRALIA

South Atlantic anomaly

637 x 623, 6.0 deg inclination

Lifetime ~ 10 years

Saa passages: not quite every orbit, never through highest intensity

Commissioning and Calibration Plan

Instrument turn-on	June 19
Mast deployment	June 21
Focal plane preliminary threshold/gain calibration	June 22-29
Coarse optical axis determination/adjustment	June 30 – July 2
Instrument alignment observations as function of solar angle	July 2 - 13
3C 273 effective area/cross calibration campaign	July 13 - 20
Optical axis fine calibration (Crab)	July 23 - 25
PSF calibration (pending Malindi coverage)	TBD
Response calibration – G21.9 (PWN)	July 27 – Aug 3
Crab effective area	Sept
Absolute timing calibration	TBD

Target	Comment	Approx integration
Cygnus X-1	First light	20 ksec
3C 273	Optical axis determination/alignment, cross-calibration (Chandra, XMM, Suzaku, INTEGRAL)	350 ksec
GRS1915+105	Instrument Saa alignment	30 ksec
1E1740.7-2942	Instrument Saa alignment	30 ksec
LMC X-4	Instrument Saa alignment	30 ksec
SMC X-1	Instrument Saa alignment	30 ksec
Mkn 421	Instrument Saa alignment	30 ksec
Vela X-1	Instrument Saa alignment	30 ksec
PKS 2155-304	Instrument Saa alignment	30 ksec
GS0834-430	Instrument Saa alignment	30 ksec
MCG 5-23-16	Instrument Saa alignment	30 ksec
Sgr A*	Science (joint with Chandra)	200 ksec
Crab	Optical axis calibration	60 ksec
NGC 1365	Joint with XMM	250 ksec
G21.9 PWN	Response Calibration	350 ksec

In-flight Performance – spectral resolution

In-flight spectrum for FPM B using radioactive calibration source

In-flight Performance – spectral resolution

In-flight radioactive source calibration – FPMB at high energy

High-energy resolution - 1 keV FWHM including all science grades (0.92 keV for FPMB, 1.0 keV for FPMA – Requirement: < 1.6 keV) Low-energy resolution: 0.4 keV FWHM@6 keV

Instrument Alignment Over Orbit

Motions for sun-pointed aspect of 40 deg

On-orbit mast motions are consistent with pre-launch predictions

Motions that must be removed are few mm (1-2 arcminutes) – systematics still under investigation

Background Variation

Background rate is very stable

Measured Background

Measured background (black) vs. NuSIM models (worst case NuSIM not shown) for FPMA

Effective Area Normalization

Previous (post launch) comparisons

Comparison to Swift

Ratio of NuSTAR/Swift flux using Swift best-fit model

Swift 5-10 keV measured flux: 4.28 e⁻¹¹ ergs/ s/cm²

4.108e-11 - 4.517e-11) (95% confidence)

NuSTAR 5-10 keV measured flux: 4.4 e⁻¹¹ ergs /s/cm²

No "calibration factor" applied – uses best NuSTAR ground calibration – agree to better

than 2.5%(!)

Low Energy Response

Ratio of NuSTAR/Swift flux using Swift best-fit model

At E< 5 keV we see expected deviations due to lack of inclusion of detector thresholds in current response

Detector thresholds: 1.5 keV (lower than attenuation cutoff)

Good news: NuSTAR data will be calibrated and usable to 3-4 keV

Effective Area Summary

- Effective area agrees well with Swift over 5 20 keV
- Evaluation of E>20 keV will have to wait for Suzaku PIN, INTEGRAL comparison
- No evidence that high energy (E>40 keV) response differs from pre-launch estimates by more than 30%
 - » Note- uncharged territory high statistics spectra E>20 keV on short (1ksec) timescales

Angular Resolution

- To early to tell getting numbers circa 60", however variations of 7-10" pointing to pointing
 - » Indicates alignment/imperfect metrology corrections or deformation induced in optics mounting
 - » Elongation of image points to star tracker misalignment as one (of several) possible causes
 - Expect to meet <60" requirement

Some Fun

Fit to Vela X-1 alignment data – no cyclotron line

Some Fun

Fit to Vela X-1 alignment data — using realistic physical model with cyclotron line

Red= FPMA, blue FPMB – note some small calibration issues to be resolved

Sgr A*

Joint campaign with Chandra and Keck – first night – lots of action!

Science Commissioning Team

- Matteo Bachetti (IRAP)
- Eric Bellm (CIT)
- Mislav Bolokovik (CIT)
- Rick Cook (CIT)
- Bill Craig (UCB/LLNL)
- Andrew Davis (CIT)
- Karl Forster (CIT)
- Felix Fuerst (CIT)
- Brian Grefenstette (CIT)
- Ting-Ni Lu (NTHU)
- Kristin Madsen (CIT)
- Peter Mao (CIT)
- Hiromasa Miyasaka (CIT)
- Matteo Perri (ASDC)
- Simonetta Puccetti (ASDC)
- Vikram Rana (CIT)

- Dominic Walton (CIT)
- Niels Joern Westergaard (DTU)
- Andreas Zoglauer (UCB)

Baseline Science Mission

Key science goal	Observations	Time (weeks)
Locate massive black holes	Deep and wide-field extragalactic surveys (GOODS S, COSMOS, BAT-shallow)	23
Study the population of compact objects in our Galaxy	Survey Galactic Center and other fields of varied ages (spiral arms, bulge)	20
Explosion dynamics and nucleosynthesis in core collapse and 1a SNe	Pointed observations of young (τ < 500 yr) remnants – Cas A, SN1987A, GX1+9 ToO observations of nearby SN1a	22
Understanding relativistic jets in supermassive black holes	Contemporaneous multiwavelength observations of GeV/TeV blazars	6
Other Objectives	Observations	Time
Varied	In final planning stage	33

NuSTAR Summary

- Selected through competition in 2005
- Cancelled in Feb 2006 as result of NASA FY 2007 budget cuts
- Reinstated 9/2007
- Pl cost cap (actual) 126.8M\$
 - » This is within 5% of proposed cost
 - » Go Explorer Program!!
- Great science ahead observatory calibration complete by Sept 31 2012